§9-4 Inscribed Angles

- Definition: Inscribed Angle
 - An angle with a _____ on the circle.

∠ABC is an inscribed angle

§9-4 Inscribed Angles

- Theorem: Measure of an Inscribed Angle
 - If an angle is inscribed in a circle, then the measure of the angle equals ______ the measure of its intercepted arc.

Practice: Find the measure of the indicated arc or angle.

Practice: Find the measure of the indicated arc or angle.

Practice: Find the measure of the indicated arc or angle.

In the circle shown, $mST = 68^\circ$. Find *m*∠1 and *m*∠2.

Theorem

 Theorem:
If two inscribed angles of a circle (or of congruent circles) intercept the _____ arc (or congruent arcs), then the angles are

Inscribed Polygons

Definition:

- If all the vertices of a polygon are located on a circle, then it is inscribed in the circle.
- The circle is then circumscribed about the polygon.

ABCD is an inscribed quadrilateral

Inscribed Polygons

 Theorem: A right triangle is inscribed in a circle if and only if its

is the of the

circle.

In $\odot X$, $m \angle 4 = 7x + 3$, $m \angle 5 = 7x + 3$, and $m \angle 1 = 5x$. Find $m \angle 1$, $m \angle 2$, $m \angle 4$, and

(If a side of a triangle is the diameter of the circle, then it's a right triangle. Def. rt. \angle)

(same measure)

(corollary to Δ Sum Th. & substitution)

(Substitution)

(Substitution)

(Δ Sum Th. & Substitution)

Quadrilateral QRST is inscribed in $\odot C$. If $m \angle S = 28$ and $m \angle R = 110$, find $m \angle Q$ and $m \angle T$.

С

Quadrilateral QRST is inscribed in $\odot C$. If $m \angle S = 28$ and $m \angle R = 110$, find $m \angle Q$ and $m \angle T$.

С

Theorem

A quadrilateral can be inscribed in a circle if and only if its _____.

Practice. Find the value of each variable.

